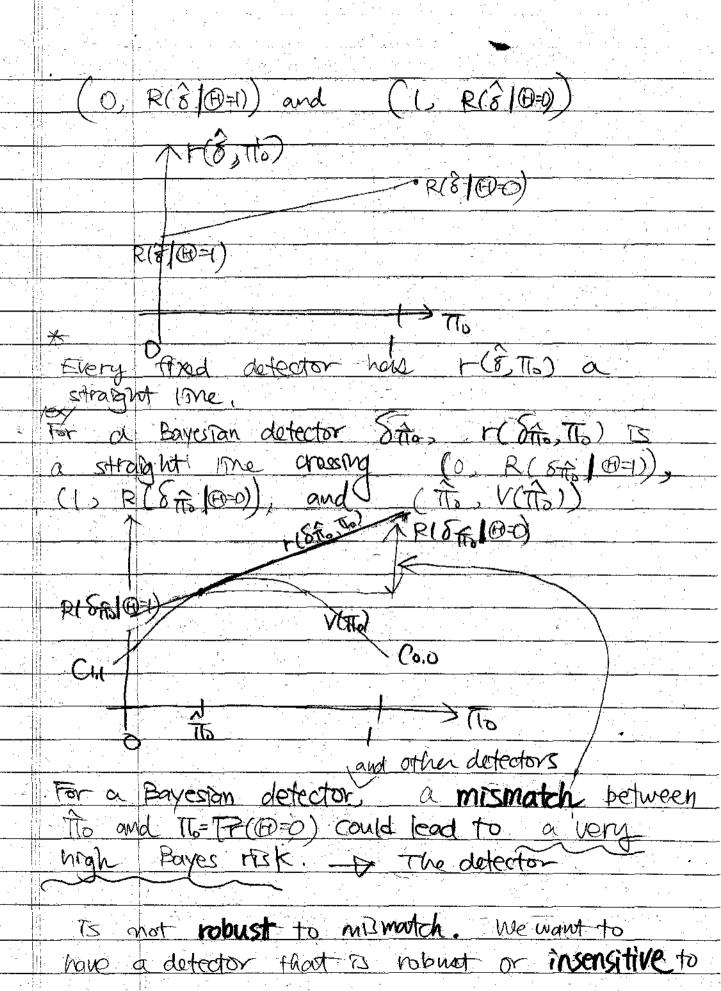
Minimax Hypothesis Testing

Page O Def. Suppose that a binary hypothesis testing has Costs Co,o, Ci,o, Co,, Co, エ ~ チェンロ=の(生) I~ (10=0/4) Y~fx;0=(生) I~ fr10-1 (4) 76 Detector Source In tadar engneerip DVESEUL are the Cannengion 2 2minimax We want to And a defector argmin max (R(8(0=0), R(8(0=1)) onditional risks are given by (2000) This detector where the conditional risks are given by (x) $R(\delta(0=0) = C_{0,0} Pr(\hat{\Theta}=0(0=0) + C_{1,0} Pr(\hat{\Theta}=1(0=0))$ R(5(0=1) = Con A-(0=0)0=1) + Con A-(0=10=1)

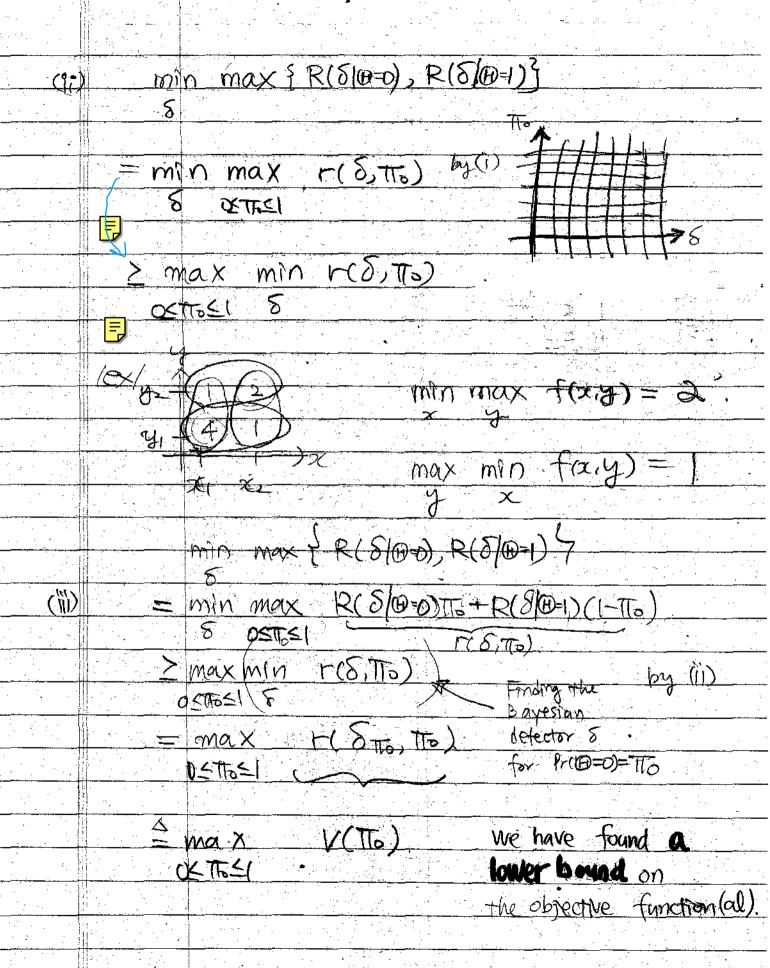
Con Part Con (FPU)

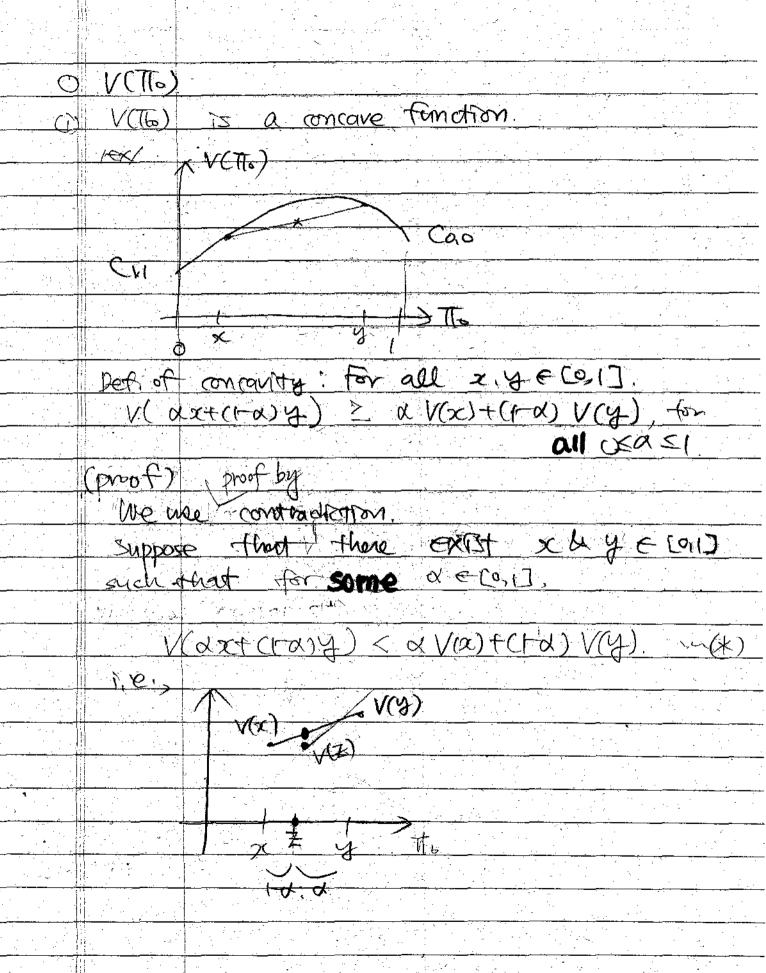
Communication and Information Systems Laboratory

(1) Uniform cost assignment.


$$R(810=0) = 0.$$
 $R(\hat{\theta}=0|0=0) + (.P(\hat{\theta}=1|0=0))$
 $= P_{FA}$
 $R(510=1) = 1.$ $P(\hat{\theta}=0|0=1) + 0.$ $P(\hat{\theta}=1|0=1)$
 $= P_{M}$

(ii) The minimax criterion can be applied both problems by Bayerian & non-Bayerian observation models.


(11) See Poor I.C.


Ó	Robusts	chatector for -	Bayesian resting	
	Carre	- dutedow, It	to i me concer. H	, tyes causes
		+ 600/41	Cho =- \$90	
	Wedesig	na / N	C11 =-\$20	
		to be said to	C1.0 = \$10000	→ false alarm
		1 different countries.	Co.1 = \$1,000,000) → miss
	Tomaxim	ratha neventice,	minimize RID)	(Bayes defector)
		P(H) is known	8	
		Bayesian detec	64	

a straight ine mossing

	the mematch. I the minimux detector.
	We will see that
	The minimux detector is not only a
	non-Bayesian detector defined as
	The state of the s
(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	$\geq \min_{max} = \operatorname{argmin}_{max}(R(\delta _{\Theta=0}), R(\delta _{\Theta=1}))$
	but also (10) a retrust detector for
7	Heat 3 mornishing to mismatch in To
	& whose performance is guaranteed & uniterin
Bayesian	
420/CSINA	
	Crelation to minimax & Bayesian
	A TWST.
(0)	max { R(8/0=0), R(8/0=1) }
	= $\max_{r(S, T_0)}$
	0≤TT0≤
	proof) r(5, To)
	R(δ I Φ=0)
	R(8/0-1)

	porme Sz = argmin r(S, Z).	
	where z = azt (ra)y. Note, mm r(d, Z)	
	$=V(\pm)$	
	V(x) & r(Dz x) r(8=x)	+ 1 1 1 1
	by definition of VCTD,	
	by definition of VOTED.	
	Z Z roje, to)
	which implies (14)	
	•1(2)	
	V(XX+(rx)4) Z	•
	XV(x)+(10x)V(4) = 1	
	1. concave	· · · · · · · · · · · · · · · · · · ·
(1)	r(8, TTO) ≥ V(TTO) · \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(îV		·
,,		•
	(proof) Any convex or concave fund	(DV)
	defined on [0:1] is continuous.	
		· .
City	Not recessarily differentiable.	
	(ox/ 2 VOI.)	
		· .

(V)	- V(To) is upper & lower bounded
	min VCTTO) = min (Chi) Cao)
	max VCTTO) < max /Cn 7 < 00
	-> V(TTO) have minimum & maximum
	on [9]
<u> </u>	argmax V(To) = S 0
	(something & (O)
	we only consider
	+ hr caso
	y unique

<u> </u>	
	The minimax defector
	When 0 < argmax W(Thr) <1
	V(TIG) = TIS the least favorable
	prior for Bayesian
	detection.
	*WACCHOIL
•	1 C
	(i) If VOTE) Is differentiable at 775t then
	ν (ΤΙΕ) = O
	r(Sax, TTo) must be V(TTo) 4 TTO.
	MOTES INDUSTRICA VIIO
	Hence, by adopting 5718, we have
	13 0 10) NC 1000C
	min max r(8, TTO) < max r(8, TTO)
100/	
min fax	
st. x∈Ω	
(1) $f(x) \geq 5$	7 () 3 () () () () () () () () (
D We find fell)	
Then $x=1$	Hence. Tit achieves the lower bound.
	Therefore, STEX Is the minimax
	detector
	Note that R(St. + 10=0) = R(21+ 10=1).
	So alled an equalizer rule.

			·	<u> </u>	<u> </u>	·	
	For	Afferon	trouble VC9	70) 0	he eque	when	role
		nique.	·)	<u> </u>	
							· :
	_1	mmi	max	⇔ e	phallson		
		rule			rule		
			-				· · · · · · · · · · · · · · · · · · ·
					tor	(TO)	-INA 7
						di (Teve	MINON CO
	(i) FC	Collon	n 21	on an	feveration	ible at	- π×
-	but	w 119tz		V(716)	70 and	VITO	+) <0
				1	•		
				left than	rd)	•	1 (hard
	R	16*+ (P=0)		Dervort		dern	ative
	ther:		1/2	. S.*-		Sa	<u>*</u> +
		VOTE	B(III	(D) 5 18-		11	0
	Max.					-	
	D/78	(P)	RU	118*+10+1)			-
	POR	TO E	To				·. · · ·
		Tox					
	Letts	construct	- a r	andomiz	ed det	ector	5
-	Sit.						
	*	H S = S	= (-4	R &			
370	er p	2-15=5-	n#+) =	I R		:	
Olmaro	Where	2	ET C	hosen t	o have		
		D	N				
	R(510	0)= 8 R/	S-184-16A	#0) + (I-	R) R(निक्रमि	D)
	= R/JA	1) = R-R/	5 mx+W	} ;)+(-		. V	

11.60 RISTO + (0=0) + R(5 TO + (0+1) R(5/18+10-1) - R(5/18+10+) V(110) V(TIS*+)-V(TIS*)-R(STIS*-10)=0) Note that this detector of how r(8) = V(T18+). (Mence, it is a Bayes delector 1 Therefore, Similarly, 5 becomes the imminus detector. Agam, it's the unique equalizer tule Note that by many different of, we can have All these rules. have the same ((8)= V(TIX). Bayes' Filt However their - Conditional risks are different ? ' randomization I important In Non Bayerran detection such as N-D. & minimax. - There are some cases missing in this rourse.