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Joint Transmitter and Receiver Optimization for
Improper-Complex Second-Order Stationary

Data Sequence

Jeongho Yeo, Joon Ho Cho†, and James S. Lehnert

Abstract: In this paper, the transmission of an improper-complex
second-order stationary data sequence is considered over a strictly
band-limited frequency-selective channel. It is assumed that the
transmitter employs linear modulation and that the channel out-
put is corrupted by additive proper-complex cyclostationary noise.
Under the average transmit power constraint, the problem of min-
imizing the mean-squared error at the output of a widely linear
receiver is formulated in the time domain to find the optimal trans-
mit and receive waveforms. The optimization problem is converted
into a frequency-domain problem by using the vectorized Fourier
transform technique and put into the form of a double minimiza-
tion. First, the widely linear receiver is optimized that requires,
unlike the linear receiver design with only one waveform, the de-
sign of two receive waveforms. Then, the optimal transmit wave-
form for the linear modulator is derived by introducing the notion
of the impropriety frequency function of a discrete-time random
process and by performing a line search combined with an itera-
tive algorithm. The optimal solution shows that both the periodic
spectral correlation due to the cyclostationarity and the symmet-
ric spectral correlation about the origin due to the impropriety are
well exploited.

Index Terms: Cyclostationarity, improper-complex, joint transmit-
ter and receiver optimization, mean-squared error (MSE), vector-
ized Fourier transform (VFT).

I. Introduction

An information-bearing signal encountered in communica-
tions and signal processing often exhibits periodicity in its mean
and auto-covariance functions and thus it is well modeled by a
wide-sense cyclostationary (WSCS) random process [1]. This
structure in the first-order and the second-order statistics has
long been exploited in the design of many communications and
signal processing systems [2], [3].

One of the classical problems related to the processing of
WSCS random processes is a joint optimization of the trans-
mitter (Tx) and receiver (Rx) in a communication system. In
[4]–[7], real-baseband pulse amplitude modulation (PAM) of a
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wide-sense stationary (WSS) real-valued data symbol sequence
is considered with a linear Rx for use over an additive WSS col-
ored noise channel. Under the minimum mean-squared error
(MMSE) optimality criterion and the average transmit power
constraint, the jointly optimal transmit and receive waveforms
are derived. It is shown that, interestingly, the waveforms have
nonzero spectral values only on a generalized Nyquist interval
[6] with length equal to the minimum bandwidth required to
satisfy the Nyquist condition for zero intersymbol interference
(ISI) [1].

This joint optimization problem is extended in [8] to
complex-baseband quadrature amplitude modulation (QAM) of
a WSS complex-valued data symbol sequence. Under the linear
MMSE (LMMSE) optimality criterion and the average transmit
power constraint, the jointly optimal transmit and receive wave-
forms are derived for use over an additive WSCS noise channel.
It is well known that a WSCS noise model is better than a WSS
model for the case in which data-like QAM interferences are
present as well as an ambient Gaussian noise [1]. In contrast to
the previous results only with an additive WSS noise, the opti-
mal waveforms are shown in general to have nonzero spectral
values on a frequency interval whose length is greater than that
of the generalized Nyquist interval. This is because, unlike a
WSS random process, a WSCS random process possesses non-
zero correlation in the frequency domain among the components
that are spaced integer multiples of the symbol rate apart [9]. To
exploit such spectral correlation of the WSCS random process,
a vectorized Fourier transform (VFT) technique is employed in
[8]. This technique is motivated by the harmonic series repre-
sentation [9] of a WSCS random process, and the use of that rep-
resentation for joint Tx and Rx optimizations in cyclostationary
interference and noise has been examined in [10] and [11].

The results in [8], [10], [11], however, have considered only
the real passband or, equivalently, the complex baseband trans-
mission of a proper-complex data sequence. Hence, these
results are not directly applicable to, e.g., the real passband
transmission of a BPSK data sequence, which is an improper-
complex data sequence in complex baseband. Recall that
complex-valued random variables, vectors, and processes are
called proper if their complementary covariance, complemen-
tary covariance matrix, and complementary auto-covariance
function (a.k.a. pseudo-covariance, pseudo-covariance matrix,
and pseudo-covariance function) vanish, respectively [12]. Oth-
erwise, they are called improper [13]. Although the com-
plex envelopes of the majority of digitally modulated signals
are proper, there still remain other digitally modulated signals
whose complex envelopes have non-vanishing complementary
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auto-covariance functions [13]. For example, the complex en-
velopes of PAM, vestigial sideband PAM, unbalanced QAM,
offset quaternary phase-shift keying (OQPSK), and Gaussian
minimum shift keying are improper.

Among these improper-complex signals, we focus in this pa-
per on a linear modulation of an improper-complex data se-
quence using only one transmit waveform. In particular, we
consider an improper-complex data sequence that is well mod-
eled by a zero-mean improper-complex second-order station-
ary (SOS) random process for which the auto-covariance and
the complementary auto-covariance functions depend only on
the time difference [13]. This results in an improper-complex
second-order cyclostationary (SOCS) transmitted signal. For
example, PAM, vestigial sideband PAM, and unbalanced QAM
fall into this category. It is assumed that such an improper-
complex SOCS signal is transmitted over a strictly band-limited
frequency-selective linear time-invariant (LTI) channel whose
output is corrupted by an additive proper-complex SOCS ran-
dom process. As already mentioned, proper-complex SOCS
random processes well model the complex envelopes of the ma-
jority of digitally modulated signals as well as the complex en-
velope of an additive Gaussian noise.

Our objective is to extend the aforementioned joint optimiza-
tions of the Tx and Rx for proper-complex WSCS signaling to
a joint Tx and Rx optimization problem for improper-complex
SOCS signaling under the MMSE optimality criterion and the
average transmit power constraint. It is well known that the
second-order properties of an improper-complex signal are not
well captured by a linear Rx, but instead by a class of nonlinear
Rx’s called widely linear Rx’s [13]. Combined with a widely
linear Rx, the improper-complex signaling can enhance the per-
formance of a communication system. For example, the inter-
ference alignment techniques adopting improper-complex data
symbols and widely linear processing have been recently stud-
ied in [14]–[17] to increase the total throughput of users in an
interference channel. An improper-complex signaling combined
with a widely linear processing has also been recently consid-
ered as one of the candidate techniques for the next generation
wireless communication systems [18], [19].

There are two types of widely linear Rx’s. The first one lin-
early processes the signal augmented by its complex conjugate,
whereas the second one linearly processes the real part of the
signal augmented by the imaginary part. In this paper, the first
type of widely linear processing also referred to as the linear-
conjugate linear (LCL) filtering [20] is employed. It is note-
worthy that, unlike the joint optimizations in [8], [10], [11], we
now need to find two receive waveforms under the widely lin-
ear MMSE (WLMMSE) optimality criterion, where one is em-
ployed to filter the complex envelope of the received signal and
the other to filter its complex conjugate. The VFT technique
again enables us to convert the objective function and the av-
erage transmit power constraint described initially in the time
domain into those in the frequency domain. Unlike the previous
joint optimizations, the objective function is now expressed in
terms of the VFT of the transmit waveform augmented by the
VFT of its complex conjugate and the VFT of a receive wave-
form augmented by the VFT of the other receive waveform. Us-
ing these augmented vector-valued functions, we derive the op-

timal waveforms of the WLMMSE Rx in a straightforward way
as a function of the transmit waveform. It is shown that the two
receive waveforms of the WLMMSE Rx exploit not only the pe-
riodic spectral correlation due to the cyclostationarity, but also
the symmetric spectral correlation about the origin due to the
impropriety [13].

To derive the optimal transmit waveform, we devise the no-
tion of the impropriety frequency function of the transmitted
improper-complex SOS data sequence by using the relation be-
tween the power spectral density (PSD) and the complementary
PSD of the random process. This real-valued non-negative func-
tion converts the transmit waveform optimization problem into
an equivalent convex optimization problem to find the optimal
energy density of the transmit waveform. Then, a line search
combined with an iterative algorithm is proposed to solve the
problem. After finding the optimal energy density, the optimal
transmit and receive waveforms are obtained. Numerical results
provide an example of joint waveform design and also show
the effect of the impropriety frequency function on the mean-
squared error (MSE) performance.

The rest of this paper is organized as follows. In Section II,
the system model is described and the problem is formulated in
the time domain. In Section III, the problem is reformulated in
the frequency domain. In Section IV, the impropriety frequency
function is introduced and the jointly optimal transmit and re-
ceive waveforms are derived. Numerical results are provided in
Section V, and concluding remarks are offered in Section VI.

II. System Model and Problem Formulation

In this section, we describe the system model and formulate
the optimization problem in the time domain. The system model
is an extension of that in [8], which only considers the transmis-
sion and reception of a proper-complex SOS data sequence, to
now allow improper-complex SOS sequences. The optimality
criterion of the joint optimization problem is also extended from
the LMMSE criterion to the WLMMSE criterion.

A. System Model

A Tx and an Rx operate over a real passband to transmit a data
sequence {b[l]}l∈Z. Fig. 1 shows the system block diagram in
complex baseband. The data sequence {b[l]}l∈Z is assumed well
modeled by a zero-mean improper-complex SOS random pro-
cess with auto-covariance and complementary auto-covariance
functions given, respectively, by m[k] , E{b[k + l]b[l]∗} and
m̃[k] , E{b[k + l]b[l]}, where the superscript ∗ denotes com-
plex conjugation. By applying the discrete-time Fourier trans-
form (DTFT) operations to m[k] and m̃[k], the PSD M(f) and
the complementary PSD M̃(f) of the data sequence {b[l]}l∈Z
are derived, respectively, as M(f) ,

∑∞
k=−∞ m[k]e−j2πfk and

M̃(f) ,
∑∞

k=−∞ m̃[k]e−j2πfk.
The Tx to be designed employs linear modulation with

symbol transmission rate 1/T [symbols/sec], where the trans-
mit waveform is denoted by s(t). The transmitted signal∑∞

k=−∞ b[k]s(t− kT ) is passed through a strictly band-limited
channel that is modeled by an LTI system with impulse response
h(t) having the one-sided bandwidth B [Hz] in complex base-
band.
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Fig. 1. System block diagram.

The received signal denoted by Z(t) consists of the signal
from the Tx and an additive interference-plus-noise signal N(t),
where the latter is modeled by a zero-mean proper-complex
SOCS random process with fundamental cycle period T0. It is
assumed that the multiplicative inverse T of the symbol trans-
mission rate of the desired signal is chosen as an integer multiple
of T0. Thus, Z(t) can be written as

Z(t) =
∞∑

k=−∞

b[k]p(t− kT ) +N(t), (1)

where p(t) , h(t) ∗ s(t) denotes the overall response with the
operator ∗ denoting the convolution integral. There should be
no confusion from the superscript ∗ that denotes the complex
conjugation.

In (1), it can be easily shown that the desired signal com-
ponent X(t) ,

∑∞
k=−∞ b[k]p(t − kT ) becomes a zero-mean

SOCS random process due to the second-order property of
the zero-mean SOS data sequence {b[l]}l∈Z. In other words,
the mean, the auto-covariance, and the complementary auto-
covariance functions of X(t) satisfy, respectively, µX(t) ,
E{X(t)} = 0, rX(t, s) , E{X(t)X(s)∗} = rX(t+T, s+T ),
and r̃X(t, s) , E{X(t)X(s)} = r̃X(t + T, s + T ), ∀t,∀s.
In what follows, we also call rX(t, s) and r̃X(t, s) the auto-
correlation and the complementary auto-correlation functions,
respectively, because X(t) has mean zero.

In (1), it can be straightforwardly shown that the interference-
plus-noise signal N(t) is SOCS with mean zero and cycle period
T , because T is assumed to be an integer multiple of T0, i.e.,
µN (t) , E{N(t)} = 0, rN (t, s) , E{N(t)N(s)∗} = rN (t +
T, s+ T ), and r̃N (t, s) , E{N(t)N(s)} = r̃N (t+ T, s+ T ),
∀t, ∀s. Now that Z(t) is a summation of two uncorrelated zero-
mean SOCS random processes with cycle period T , it is also a
zero-mean SOCS random processes with cycle period T .

It is well known [13] that, for a vector-valued signal model,
a widely linear Rx employing two linear filters outperforms a
linear Rx employing only one linear filter when either the de-
sired signal or the interference-plus-noise signal is improper.
Thus, in this paper, we employ two LTI filters with impulse re-
sponses w1(−t)∗ and w2(−t)∗ to process the improper-complex
SOCS process Z(t) and its complex conjugate Z(t)∗, respec-
tively. The two LTI filters are followed by uniform samplers
with rate 1/T [samples/sec], and then the sequence of decision
statistics {z[l]}l∈Z is obtained as the sum of the sampler outputs,
i.e.,

z[l] , z1[l] + z2[l], (2)

where the sampler outputs z1[l] and z2[l] are defined, respec-
tively, as

z1[l] , w1(−t)∗ ∗ Z(t)
∣∣
t=lT

=

∫ ∞

−∞
w1(t− lT )∗Z(t)dt (3a)

and

z2[l] , w2(−t)∗ ∗ Z(t)∗
∣∣
t=lT

=

∫ ∞

−∞
w2(t− lT )∗Z(t)∗dt. (3b)

B. Problem Formulation in Time Domain

Our objective is to find the transmit and receive waveforms
s(t), w1(t), and w2(t) that jointly minimize the MSE given by

ε
(
s(t), w1(t), w2(t)

)
, E{|b[l]− z[l]|2}, (4)

where s(t), w1(t), and w2(t) are the parameters to be designed.
Since T is an integer multiple of the fundamental cycle period
T0 of the interference-plus-noise signal, it can be easily shown
that the MSE defined in (4) as the objective function of the opti-
mization problem is the same regardless of the value of l.

The average transmit power constraint is then imposed on
this joint optimization problem. Since the transmitted signal is
SOCS with cycle period T , the average transmit power P̄ can
be defined as

P̄ , E

 1

T

∫
⟨T ⟩

∣∣∣∣∣
∞∑

k=−∞

b[k]s(t− kT )

∣∣∣∣∣
2

dt

 , (5)

where ⟨T ⟩ denotes any integration interval of length T [sec].
Thus, the constraint is given by P̄ = PT for some PT > 0.
Therefore, the joint optimization problem is given by

Problem 1:

minimize
s(t), w1(t), w2(t)

ε
(
s(t), w1(t), w2(t)

)
(6a)

subject to P̄ = PT . (6b)

III. Problem Reformulation in Frequency Domain

In this section, Problem 1 described in the time domain is re-
formulated in the frequency domain. To proceed, we first review
the notions of the VFT and the matrix-valued PSD. Then, by
proposing the notion of the matrix-valued complementary PSD
and the methods to augment the VFTs of the transmit and re-
ceive waveforms, we convert the objective function (4) and the
average transmit power constraint (5) to equivalent expressions
in the frequency domain.

A. Review of VFT and Matrix-Valued PSD

In this subsection, we briefly review the notions of excess
bandwidth, the Nyquist interval, the VFT, and the matrix-valued
PSD. For details, see [8].

Given a pair (B, 1/T ) of a bandwidth and a reference rate, the
excess bandwidth β is defined as β , 2BT − 1 and the Nyquist
interval F is defined as

F ,
{
f : − 1

2T
≤ f <

1

2T

}
.
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Given a pair (B, 1/T ) and a deterministic function p(t) hav-
ing the continuous-time Fourier transform (CTFT) P (ξ) ,∫∞
−∞ p(t)e−j2πξtdt, the VFT p(f) of p(t) is defined as a vector-

valued function of f ∈ F that is equivalent to P (ξ). In particu-
lar, the kth entry of p(f) is given by

[p(f)]k , P

(
f +

k − L− 1

T

)
for k = 1, 2, · · · , 2L+ 1, where L , ⌈β/2⌉.

Given a pair (B, 1/T ) and an SOCS random process N(t)
with cycle period T having the auto-correlation function
rN (t, s), the matrix-valued PSD RN (f) of N(t) is defined as
a matrix-valued function of f ∈ F , whose (k, l)th entry is given
by

[RN (f)]k,l , R
(k−l)
N

(
f +

l − L− 1

T

)
for k, l = 1, 2, · · · , 2L + 1, where R

(k)
N (ξ) is the CTFT of

r
(k)
N (τ) that is obtained by applying the Fourier series expansion

to rN (t, t− τ), i.e., rN (t, s) =
∑∞

k=−∞ r
(k)
N (t− s)ej2πkt/T .

In using the above definitions, it is assumed that the parameter
B is chosen as bandwidth in complex baseband over which the
Rx can observe and process a signal and that the parameter 1/T
is chosen as the symbol transmission rate of the Tx. It is also
assumed that the frequency band over which the Tx can emit
non-zero power is identical to the frequency band of the Rx. For
a general case where these two frequency bands are different,
the notion of virtual legacy Rx’s and the orthogonal constraint
at the virtual legacy Rx’s can be employed as is done in [21] for
the transmission of a proper-complex data sequence.

Due to the above assumption on the frequency band that can
be used by the Tx and the Rx, the first and the last entries of
the VFT of the transmit waveform need to be always zero for
−1/(2T ) ≤ f ≤ L/T − B and B − L/T ≤ f ≤ 1/(2T ),
respectively. For this, the notion of the effective VFT is em-
ployed as discussed in [8], [21], and [22]. The effective VFT
is defined as a variable-length vector-valued function of f ∈
F by removing the first and the last entries of the VFT for
−1/(2T ) ≤ f ≤ L/T − B and B − L/T ≤ f ≤ 1/(2T ),
respectively. In what follows, the length of the effective VFT
is denoted by N (f). For details, see [22, Eq. (14)]. Simi-
larly, the effective matrix-valued PSD can be also defined as an
N (f)-by-N (f) matrix-valued function of f ∈ F by remov-
ing both the first row and column of the matrix-valued PSD for
−1/(2T ) ≤ f ≤ L/T − B and by removing both the last row
and column for B − L/T ≤ f ≤ 1/(2T ).

B. Problem Reformulation in Frequency Domain

In this subsection, the objective function and the average
transmit power constraint in Problem 1 are converted into equiv-
alent expressions in the frequency domain. To begin, we pro-
pose the notion of the matrix-valued complementary PSD of an
improper-complex SOCS random process.

Definition 1: Given a pair (B, 1/T ) and an improper-
complex SOCS random process X(t) with cycle period T and
complementary auto-correlation function r̃X(t, s), let R̃(k)

X (ξ)

be the CTFT of r̃(k)X (τ) that is obtained by applying the Fourier
series expansion to the periodic signal r̃X(t, t − τ) = r̃X(t +

T, t+ T − τ), ∀t, i.e., r̃X(t, s) =
∑∞

k=−∞ r̃
(k)
X (t− s)ej2πkt/T .

Then, the matrix-valued complementary PSD R̃X(f) is defined
as a matrix-valued function of f ∈ F , whose (k, l)th entry is
given by

[R̃X(f)]k,l , R̃
(k−l)
X

(
f +

l − L− 1

T

)
for k, l = 1, · · · , 2L+ 1.

Note that the matrix-valued complementary PSD R̃N (f) of
the interference-plus-noise signal N(t) becomes an all-zero ma-
trix because N(t) is modeled by a zero-mean proper-complex
SOCS random process. Note also that the effective matrix-
valued complementary PSD can be defined similarly to the ef-
fective matrix-valued PSD. In what follows, each of the VFT,
the matrix-valued PSD, and the matrix-valued complementary
PSD is an effective one.

By using the above definitions, the matrix-valued PSD and the
matrix-valued complementary PSD of the desired signal compo-
nent in (1) are derived as follows.

Lemma 1: The N (f)-by-N (f) matrix-valued PSD RX(f)
and the N (f)-by-N (−f) matrix-valued complementary PSD
R̃X(f) of the desired signal X(t) =

∑∞
l=−∞ b[l]p(t − lT ) are

given by

RX(f) =
1

T
M(fT )p(f)p(f)H (7a)

and

R̃X(f) =
1

T
M̃(fT )p(f)

(
J(−f)p(−f)∗

)H
, (7b)

respectively, where p(f) denotes the VFT of p(t), J(f) denotes
the N (f)-by-N (f) backward identity matrix whose (m,n)th
entry is given by 1 for m+n = N (f)+1, and 0 otherwise, and
H denotes Hermitian transposition.

Proof: By using the CTFT of r(k)X (τ) and r̃
(k)
X (τ), it can

be easily shown that R(k)
X (f) = M(fT )P (f + k/T )P (f)∗/T

and R̃
(k)
X (f) = M̃(fT )P (f + k/T )P (−f)/T . Therefore, the

conclusion follows from the definitions reviewed in Section III-
A and Definition 1. 2

Note that J(−f)p(−f)∗ in (7) is nothing but the VFT of
p(t)∗. Thus, R̃X(f) can be interpreted as the correlation be-
tween the frequency components at f of X(t) and X(t)∗.

Now, we are ready to convert the objective function. The
MSE ε , ε

(
s(t), w1(t), w2(t)

)
defined in (4) can be rewritten

as

ε = E{|b[l]|2} − 2ℜ
(
E{b[l]∗z1[l]}

)
+ E{|z1[l]|2}

−2ℜ
(
E{b[l]∗z2[l]}

)
+ 2ℜ

(
E{z1[l]z2[l]∗}

)
+ E{|z2[l]|2},

(8)

where ℜ(·) denotes the real part. In the following propositions,
each component of the right side of (8) is expressed in terms of
the VFT, the matrix-valued PSD, and the matrix-valued comple-
mentary PSD.
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Proposition 1: The first three terms of the right side of (8)
can be rewritten as

E{|b[l]|2} =

∫
F
TM(fT )df,

E{b[l]∗z1[l]} =

∫
F
w1(f)

HM(fT )p(f)df,

and

E{|z1[l]|2} =

∫
F
w1(f)

HR(f)w1(f)df,

respectively, where w1(f) is the VFT of w1(t) and R(f) ,
RN (f) +RX(f).

Proof: See [8, Proposition 1-4]. 2

Proposition 2: . The last three terms of the right side of (8)
can be rewritten as

E{b[l]∗z2[l]} =

∫
F
w2(f)

HM̃(fT )∗J(−f)p(−f)∗df,

E{z1[l]z2[l]∗} =

∫
F
w1(f)

HR̃(f)w2(f)df,

and

E{|z2[l]|2} =

∫
F
w2(f)

HJ(−f) R(−f)∗J(−f)w2(f)df,

respectively, where w2(f) is the VFT of w2(t) and R̃(f) ,
R̃X(f).

Proof: It can be shown similarly to Proposition 1. 2

Note in E{|z2[l]|2} =
∫
F w2(f)

HJ(−f) R(−f)∗J(−f)
w2(f)df that the pre-multiplication of the backward identity
matrix J(f) reverses the order of the rows, whereas the post-
multiplication reverses that of the columns. Note also that
p(f) = H(f)s(f), ∀f ∈ F , where s(f) is the VFT of
the transmit waveform s(t) and H(f) is defined as H(f) ,
diag

{
h(f)

}
with h(f) representing the VFT of h(t).

To simplify the expression of the objective function, we define
N̄ (f) , N (f) +N (−f),

s̄(f) ,
[
s(f)T ,

(
J(−f)s(−f)∗

)T ]T
, (9a)

and
w̄(f) ,

[
w1(f)

T , w2(f)
T ]T , (9b)

where T denotes transposition. Here, the length-N̄ (f) vector-
valued functions s̄(f) and w̄(f) are the VFT of the transmit
waveform augmented by the VFT of its complex conjugate
and the VFT of a receive waveform augmented by the VFT of
the other receive waveform, respectively. Also, let the N̄ (f)-
by-N̄ (f) matrices H̄(f), M̄(f), and R̄(f) be defined, re-
spectively, as H̄(f) , diag

{
H(f), J(−f)H(−f)∗J(−f)

}
,

M̄(f) , diag
{
M(f)I(f), M̃(f)∗ I(−f)

}
, and

R̄(f) ,

 R(f) R̃(f)

R̃(f)H J(−f)R(−f)∗J(−f)

 (10)

with I(f) denoting the N (f)-by-N (f) identity matrix and
diag{A,B} denoting the block diagonal matrix whose diago-
nal blocks are the matrices A and B. These notions enable us to

derive the optimal receive waveforms in a straightforward way.
By substituting the results of Propositions 1 and 2 into (8), we

can rewrite the objective function ε as

ε
(
s̄(f), w̄(f)

)
=

∫
F

(
TM(fT ) + w̄(f)HR̄(f)w̄(f)

−2ℜ{w̄(f)HH̄(f)M̄(fT )s̄(f)}
)
df, (11)

which is a function of s̄(f) and w̄(f). Also, by using [8,
Eq. (32)] and the definition of s̄(f), we can rewrite the average
transmit power P̄ defined in (5) as

P̄ =
1

T

∫
F
M(fT )s(f)Hs(f)df (12a)

=
1

2T

∫
F
M(fT )s̄(f)Hs̄(f)df. (12b)

This leads to the equivalent joint optimization problem to find
s̄(f) and w̄(f) as

Problem 2 (a)

minimize
s̄(f), w̄(f)

ε
(
s̄(f), w̄(f)

)
(13a)

subject to P̄ = PT . (13b)
This joint optimization problem can be converted to an equiva-
lent double minimization problem given by

Problem 2 (b)

minimize
s̄(f)

minimize
w̄(f)

ε
(
s̄(f), w̄(f)

)
(14a)

subject to P̄ = PT . (14b)
In the next section, we solve this optimization problem to ob-

tain the VFTs of the optimal receive and transmit waveforms.

IV. Optimization of Transmit and Receive Waveforms

In this section, we first derive the optimal w̄(f) that mini-
mizes the objective function of the inner optimization in (14a)
for given s̄(f). By substituting this w̄(f) and introducing the
notion of the impropriety frequency function for the data se-
quence, we reduce the joint optimization problem to an equiva-
lent problem to be solved only for s(f). Then, by defining the
energy density function for s(f), this problem is converted to an
equivalent double minimization problem, where the inner prob-
lem is to find the optimal s(f) for a given energy density func-
tion and the outer problem is to find the optimal energy density
function. Once the optimal energy density function is found, it is
straightforward to construct the jointly optimal s(f) and w(f).

A. Optimization of Widely Linear Receiver

As in [8, Theorem 2], to find the optimal w̄(f) for given s̄(f),
an unconstrained quadratic optimization problem needs to be
solved. This can be done simply by using the first-order neces-
sary condition as

w̄(f) = R̄(f)−1H̄(f)M̄(fT )s̄(f), ∀f ∈ F . (15)
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By substituting the above solution into (11), we can rewrite the
MSE as

ε
(
s̄(f)

)
=

∫
F

(
TM(fT )− s̄(f)HM̄(fT )HH̄(f)HR̄(f)−1

·H̄(f)M̄(fT )s̄(f)
)
df. (16)

which is a function only of s̄(f).

B. Impropriety Frequency Function

To convert ε
(
s̄(f)

)
into a function only of s(f), the notion of

the impropriety frequency function is introduced as follows.
Definition 2: Given a discrete-time improper-complex SOS

random process with PSD M(f) and complementary PSD
M̃(f), its impropriety frequency function k(f) is defined as

k(f) ,


0, if M(f)M(−f) = 0,

|M̃(f)|√
M(f)M(−f)

, otherwise.
(17)

The above definition is motivated by the impropriety coef-
ficient of an improper-complex random variable [13, Defini-
tion 3.1] and by a relation between M(f) and M̃(f) shown
in [23, Eq. (5)]. By using the phase ϕ(f) of M̃(f), we can
rewrite the complementary PSD as M̃(f) = |M̃(f)|ejϕ(f) =
k(f)

√
M(f)M(−f)ejϕ(f), where 0 ≤ ϕ(f) ≤ 2π. In the

next lemma, the properties of the impropriety frequency and the
phase functions are provided.

Lemma 2: The impropriety frequency function k(f) and the
phase function ϕ(f) satisfy

0 ≤ k(f) ≤ 1, k(−f) = k(f), and ϕ(−f) = ϕ(f), ∀f.
(18)

Proof: Since m̃[−k] = m̃[k] by definition, we have
M̃(−f) = M̃(f), which implies ϕ(−f) = ϕ(f). This
also leads to k(−f) = k(f) by (17). By using the property
|M̃(f)|2 ≤ M(f)M(−f) shown in [23, Eq. (5)], we have
0 ≤ k(f) ≤ 1. 2

For example, an uncorrelated real-valued PAM data sequence
results in k(f) = 1, ∀f , whereas any proper-complex data se-
quence results in k(f) = 0, ∀f . By using the impropriety fre-
quency function, we can rewrite the MSE (16) in the form of a
function of s̄(f) as a function of s(f).

Lemma 3: Define c(f) as

c(f) , 1

T
M(fT )s(f)HH(f)HRN (f)−1H(f)s(f). (19)

By using c(f) and k(f), also define D(f) and k(f), respec-
tively, as

D(f) ,

c(f) 0

0 c(−f)
1+c(−f)(1−k(fT )2)

 and k(f) ,

 1

k(f)

 .

(20)
Then, the MSE ε

(
s̄(f)

)
in (16) can be rewritten as

ε
(
s(f)

)
=

∫
F

TM(fT )

1 + k(fT )T D(f)k(fT )
df, (21)

which is a function of s(f).
Proof: See Appendix A. 2

Therefore, the joint optimization problem Problem 2(b) can
be reduced to an equivalent problem to be solved only for s(f)
as

Problem 2 (c)

minimize
s(f)

ε
(
s(f)

)
(22a)

subject to P̄ = PT . (22b)

C. Optimization of Transmitter

Let ε(f) denote the integrand in (21), i.e., ε(f) ,
TM(fT )/(1 + k(fT )T D(f)k(fT )). Then, by the definitions
of c(f) and D(f) in (19) and (20), respectively, it can be seen
that ε(f0) for some f0 is affected by the choice of s(f) at both f0
and −f0. Define the energy density of s(f) as a(f) , ∥s(f)∥2.
Then, we can partition the constraint set of Problem 2(c) into
disjoint subsets, where each subset contains all feasible transmit
waveforms having the same pair (a(f), a(−f)) of the energy
density functions for f > 0. Thus, Problem 2(c) can be rewrit-
ten as

Problem 3:

minimize
a(f), a(−f)


minimize
s(f), s(−f)

∫
F+

ε(f) + ε(−f)df

subject to ∥s(f)∥2 = a(f), ∀f ∈ F
(23a)

subject to
1

T

∫
F+

M(fT )a(f) +M(−fT )a(−f)df = PT ,

(23b)
where F+ , {f : 0 ≤ f < 1/(2T )} denotes the half-Nyquist
interval. Note that similar conversions into equivalent double
minimization problems using the energy density function were
already adopted in [8], [21] to successfully solve joint Tx-Rx
optimization problems. In the next proposition, we present the
optimal s(f) for given a(f).

Proposition 3: Given a(f), the optimal solution to the inner
optimization problem in (23a) is given by

s(f) =
√
a(f)v(f)ejθ(f), ∀f ∈ F , (24)

where v(f) is the normalized eigenvector corresponding to the
largest eigenvalue of H(f)HRN (f)−1H(f), and θ(f) can be
chosen arbitrarily.

Proof: Note that the integrand ε(f) + ε(−f) in (23a) can
be rewritten as

ε(f) + ε(−f)

= T
M(−fT )(1 + c(f)k̄(fT )) +M(fT )(1 + c(−f)k̄(fT ))

1 + c(f) + c(−f) + c(f)c(−f)k̄(fT )
,

(25)

where k̄(f) , 1 − k(f)2. Since ε(f) + ε(−f) evaluated at
some f0 is a function only of s(f0) and s(−f0) through c(f0)
and c(−f0), respectively, we just need to minimize by optimiz-
ing c(f0) and c(−f0) in the integrand at each f ∈ F+ subject
to the constraint. Let c(f0) = c1 and c(−f0) = c2. Then, it
can be shown that ∂

(
ε(f0) + ε(−f0)

)
/∂c1 < 0 and ∂

(
ε(f0) +
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ε(−f0)
)
/∂c2 < 0. Moreover, since a(f0) = s(f0)

Hs(f0),
c(f0) is constrained by a(f0) through s(f0) and c(−f0) is con-
strained by a(−f0) through s(−f0). Thus, we now can sep-
arately find s(f0) that maximizes c(f0) for given a(f0) and
s(−f0) that maximizes c(−f0) for given a(−f0). This maxi-
mization of c(f) defined in (19) subject to a(f) = ∥s(f)∥2 is
exactly the same problem solved in [8, Section IV-B], where the
optimal solution is given by (24) at each f ∈ F . Therefore, the
conclusion follows. 2

According to (24), the optimal s(f) given a(f) is not affected
by the impropriety frequency function k(f). However, it actu-
ally affects the outer optimization of a(f), which will be per-
formed in what follows. Let λ(f) denote the largest eigenvalue
of H(f)HRN (f)−1H(f). Then, by (24), c(f) can be simpli-
fied as c(f) = M(fT )λ(f)a(f)/T , ∀f ∈ F . Thus, the outer
minimization problem of Problem 3 to find the optimal energy
density aopt(f) for f ∈ F becomes

Problem 4:

minimize
a(f), a(−f)

T 2

∫
F+

ε̄(f)df (26a)

subject to
1

T

∫
F+

M(fT )a(f) +M(−fT )a(−f)df = PT ,

(26b)
where ε̄(f) is given by (27) with k̄(f) , 1 − k(f)2 as already
used in (25). Now, we are ready to present the optimal a(f). In
what follows, FM and Fλ denote the supports of M(fT ) and
λ(f), respectively, i.e., FM , {f ∈ F : M(fT ) ̸= 0} and
Fλ , {f ∈ F : λ(f) ̸= 0}.

Proposition 4: The optimal solution to Problem 4 can be
found by performing a line search for a parameter ν in
(0, νmax], where νmax , maxf λ(f)

(
M(−fT )k(fT )2 +

M(fT )
)
. For each ν ∈ (0, νmax], a candidate density function

can be constructed by using the algorithm described in Table 1,
where

u(ν, f) =



[
1√
ν
− 1 +M(−fT )λ(−f)a(−f)√

λ(f)ν(f)

]+

×
√
λ(f)ν(f)

λ(f)M(fT )g(−f)
, for f ∈ FM ∩ Fλ,

0, for f ∈ FM ∩ (Fλ)
c,

arbitrary, for f ∈ (FM )c,

(28)
with g(f) , 1 + M(fT )λ(f)a(f)k̄(fT ), ν(f) ,
M(−fT )k(fT )2 + M(fT )g(−f)2, and [x]+ , max(x, 0).
The candidate function that satisfies the power constraint (26b)
is the optimal density function aopt(f).

Proof: See Appendix B. 2

Note that any line search algorithm can be used to find aopt(f)
in Proposition 4. Note also that the algorithm in Table 1 allows

Table 1. An Algorithm to Construct Candidate Density Function at
ν ∈ (0, νmax]

1: Choose f0 ∈ F+.
2: Construct a(f0) and a(−f0) as follows.
3: Set a(−f0) := 0.
4: REPEAT
5: Update a(f0) as a(f0) := u(ν, f0) by using u(ν, f) de-

fined in (28).
6: Update a(−f0) as a(−f0) := u(ν,−f0).
7: UNTIL a(f0) and a(−f0) converge.
8: Repeat lines 1− 7 for all f0 ∈ F+.

the construction of an approximate solution with arbitrary accu-
racy if the interval F+ is partitioned finely enough.

Now, by using aopt(f), we can find the VFTs of the optimal
transmit and receive waveforms as follows.

Theorem 1: The VFT sopt(f) of the jointly optimal transmit
waveform sopt(t) as the solution to Problem 1 is given by

sopt(f) =


√
aopt(f)v(f)e

jθ(f), for f ∈ FM ,

arbitrary, for f ∈ (FM )c,
(29)

where θ(f) can be chosen arbitrarily. Then, the VFTs
w1,opt(f) and w2,opt(f) of the jointly optimal receive wave-
forms w1,opt(t) and w2,opt(t) can be found by using (15).

Proof: The conclusion immediately follows from the re-
lation (9) among sopt(f), s̄opt(f), w1,opt(f), w2,opt(f), and
w̄opt(f), and Propositions 3 and 4. 2

As already mentioned, cyclostationarity and impropriety, re-
spectively, imply the periodic spectral correlation and the sym-
metric spectral correlation about the origin [13, Ch. 10], [24].
Theorem 1 vividly shows these structures in the optimal trans-
mitted signal. Specifically, the use of the VFT technique and the
augmentation of s(f) and s(−f) to form s̄(f) take care of the
periodic spectral correlation and the symmetric spectral correla-
tion, respectively.

V. Numerical Results

In this section, numerical results are provided that show the
squared magnitude of the optimal waveforms and that show the
performance achieved by the proposed joint optimization. It is
assumed throughout this section that the Tx linearly modulates
uncorrelated zero-mean improper-complex QAM symbols with
uncorrelated in-phase and quadrature components. It is also as-
sumed that an interferer linearly modulates uncorrelated zero-
mean proper-complex QPSK symbols having interference-to-

ε̄(f) ,
M(−fT )

T

(
1 + M(fT )

T λ(f)a(f)k̄(fT )
)
+ M(fT )

T

(
1 + M(−fT )

T λ(−f)a(−f)k̄(fT )
)

1 + M(fT )
T λ(f)a(f) + M(−fT )

T λ(−f)a(−f) + M(fT )
T λ(f)a(f)M(−fT )

T λ(−f)a(−f)k̄(fT )
(27)
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signal power ratio (ISR) 5 [dB] and employs a square-root raised
cosine transmit waveform having excess bandwidth β = 0.25.

The first results are to compare the PSD of data-like interfer-
ence with the squared magnitudes of the optimal transmit and
receive waveforms. There is a single interferer in Figs. 2-(a)
and (b), whereas there are two uncorrelated interferers in Fig. 2-
(c). The QAM symbols of the Tx have Es/N0 = 5 [dB]. For
illustrative purposes, it is assumed that all the channels are fre-
quency flat and corrupted by AWGN. In Fig. 2-(a), the QAM
symbols have the in-phase variance the same as the quadrature
variance, which implies k(f) = 0, ∀f . In Figs. 2-(b) and (c), the
QAM symbols have the in-phase variance 4-times the quadra-
ture variance, which implies k(f) = 0.8,∀f . It is assumed
that the Tx can emit non-zero power on f ∈ [−1/T, 1/T ) in
both Figs. 2-(a) and 2-(b), whereas the Tx can emit non-zero
power on f ∈ [−2/T, 2/T ) in Fig. 2-(c). Recall that, when
the PSD M(f) is given, the impropriety function k(f) at each
f increases as the complementary PSD M̃(f) at each f in-
creases by Definition 2. In addition, the complementary PSD
M̃(f) has non-zero value if and only if there is non-zero sym-
metric spectral correlation about the origin in the received sig-
nal. As shown in Fig. 2-(a), if the received signal is proper,
i.e., k(f) = 0, ∀f , then the optimal W2,opt(f) becomes zero
for all t. In this proper-complex case, there is no symmetric
spectral correlation, so that the WLMMSE Rx reduces to the
LMMSE Rx. On the other hand, it can be seen in Figs. 2-(b) and
2-(c) that W2,opt(f) is non-zero for the data sequence having
k(f) = 0.8, ∀f . This is because the WLMMSE Rx is designed
to well exploit the impropriety by jointly optimizing W1,opt(f)
and W2,opt(f). Recall also that a non-zero complementary auto-
correlation function in the time domain implies that symmetric
components of the signal about the origin in the frequency do-
main may have non-zero complementary correlation. Thus, if
f0 is in the frequency support of the optimal receive waveform
that processes the improper-complex signal, then −f0 is in the
support of the other optimal receive waveform that processes the
complex conjugate of the signal, and vice versa. As can be seen
in Figs. 2-(b) and 2-(c), the support of W1,opt(f) and the sup-
port of W2,opt(f) are symmetric about the origin in this case of
flat channels.

The second results are to compare the MSEs achieved by
the optimal transmit and receive waveforms for different levels
of impropriety. We consider the same interference and chan-
nel parameters as Fig. 2-(c). In Fig. 3-(a), the QAM symbols
of the Tx have Es/N0 from 0 to 15 [dB] and have k(f) =
0.0, 0.2, 0.4, 0.6, 0.8, or 1.0, ∀f . In Fig. 3-(b), the QAM sym-
bols of the Tx have Es/N0 = 0, 5, 10 or 15 [dB] and have k(f)
from 0 to 1, ∀f . In both cases, as the amount of impropriety in-
creases, the optimal pair of the Tx and Rx more exploits impro-
priety and cyclostationarity of the desired signal in suppressing
the data-like interference and, consequently, the MSE perfor-
mance monotonically improves.

The final results are to compare the bit error rate (BER) per-
formances achieved by the Rx-only optimization, the Tx-Rx
optimization proposed in [8], and the Tx-Rx optimization pro-
posed in this paper. The BER performances are obtained both
by using Gaussian approximation to the interference and by us-
ing Monte-Carlo simulation. We consider the transmission of

−1 0 1

(a) k(f) = 0,∀f

normalized frequency [1/T Hz]
−1 0 1

(b) k(f) = 0.8,∀f

normalized frequency [1/T Hz]

−1 0 1

(c) k(f) = 0.8,∀f

normalized frequency [1/T Hz]

 

 

PSD of interference
|Sopt(f)|2

|W1,opt(f)|2

|W2,opt(f)|2

Fig. 2. Comparison of squared-magnitudes of the optimal transmit and
receive waveforms for (a) k(f) = 0,∀f and single interferer, (b)
k(f) = 0.8,∀f and single interferer, and (c) k(f) = 0.8, ∀f and
two uncorrelated interferers.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
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0 [dB]

5 [dB]

15 [dB]

10 [dB]

k(f) = 0.2, 0.4, 0.6,
0.8, 1, ∀f

Fig. 3. Comparison of MSE (a) versus Es/N0 and (b) versus impropriety
k(f) = k, ∀f .

uncorrelated zero-mean BPSK symbols, i.e., k(f) = 1,∀f ,
and the same interference parameters as Fig. 3. However, the
channel from the Tx to the Rx is assumed to be frequency se-
lective with impulse response h(t) = 0.6ejπ/4δ(t − T/3) +
0.6δ(t − 3T/4) + 0.5ej

π
7 δ(t − 7T/8). It is also assumed that

the Tx can emit non-zero power on f ∈ [−2/T, 2/T ) for Fig. 4-
(a) and f ∈ [−1.9/T, 1.9/T ) for Fig. 4-(b). In addition, the
channels from the interferers to the Rx are chosen to be fre-
quency selective with impulse responses h1(t) = 0.5e−j π

2 δ(t−
T/2)+0.8ejπδ(t−5T/11) and h2(t) = 0.6e−jπ/5δ(t−T/8)+

0.3ej
23π
40 δ(t−T/3)+0.2e−j π

3 δ(t−8T/7). In the Rx-only opti-
mization, the Rx waveforms are designed to minimize the MSE
by using the WLMMSE Rx, while the Tx waveform is fixed as a
flat spectrum pulse with bandwidth 4/T and 3.8/T for Figs. 4-
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Fig. 4. Comparison of BER versus Eb/N0 for BPSK data sequence for
the transmit band (a) [−2/T, 2/T ) and (b) [−1.9/T, 1.9/T ).

(a) and 4-(b), respectively. It can be seen that the proposed opti-
mization significantly outperforms the joint optimization in [8]
because the pair of Tx and Rx proposed in [8] does not utilize
the impropriety of the improper-complex data symbols. It can
also be seen that the proposed optimization significantly outper-
forms the Rx-only optimization because the transmit waveforms
are drastically different from the jointly optimal one that well
exploits the second-order properties of the interfering signal and
the channel.

VI. Conclusions

In this paper, we have considered a joint optimization of the
Tx and Rx for the transmission of an improper-complex SOS
data sequence over an additive proper-complex cyclostationary
noise channel. An MSE minimization problem is formulated un-
der the average transmit power constraint to find the jointly op-
timal transmit waveform of a linear modulator and the receive
waveforms of a widely linear Rx. This problem is converted
into an equivalent problem described in the frequency domain
with the help of the VFT technique and solved by introducing
the notion of the impropriety frequency function. It is shown
that the optimal transmit and receive waveforms well exploit
the frequency-domain second-order structure of the improper-
complex SOS data sequence and the additive proper-complex
SOCS noise.

Appendix

A. Proof of Lemma 3

Proof: Define the 2-by-2 matrices M̂(f), M(f), and
K(f), respectively, as

M̂(f) ,

M(f) M̃(f)

M̃(f)∗ M(−f)∗

 , (30a)

M(f) ,

M(f)ejϕ(f) 0

0 M(−f)e−jϕ(f)

 1
2

(30b)

and

K(f) ,

 1 k(f)

k(f) 1

 . (30c)

Then, we can rewrite M̂(f) as M̂(f) = M(f)K(f)M(f)H.
Also, define the N̄ (f)-by-N̄ (f) matrix R̄N (f) and the N̄ (f)-
by-2 matrix S̄(f) as

R̄N (f) ,

RN (f) O

O J(−f)RN (−f)∗J(−f)


and

S̄(f) ,

s(f) 0

0 J(−f)s(−f)∗

 ,

respectively. Due to the ambient noise component in N(t),
RN (f) and R̄N (f) are positive definite for all f ∈ F . By
using R̄N (f)−1/2, define the N̄ (f)-by-2 matrix P̃ (f) as

P̃ (f) , 1√
T
R̄N (f)−

1
2 H̄(f)S̄(f)M(fT ).

Then, it can be shown that

H̄(f)M̄(fT )s̄(f)=
√
TM(fT )e−j

ϕ(fT )
2 R̄N (f)

1
2 P̃ (f)k(fT ).

Thus, the second term of the integrand in (16), which contains
H̄(f)M̄(fT )s̄(f), can be rewritten as

s̄(f)HM̄(fT )HH̄(f)HR̄(f)−1H̄(f)M̄(fT )s̄(f)

= TM(fT )k(fT )T P̃ (f)H

·
(
I + P̃ (f)K(fT )P̃ (f)H

)−1

P̃ (f)k(fT ), (31)

where I conveniently denotes the appropriately sized identity
matrix throughout this proof. Let

p̂(f) ,
√
M(fT )/Tejϕ(f)/2RN (f)−1/2H(f)s(f).

Then, we can rewrite P̃ (f) and c(f) defined in (19) as

P̃ (f) =

p̂(f) 0

0 J(−f)p̂(−f)∗


and

c(f) = ∥p̂(f)∥2,

respectively. If c(f)c(−f) = 0, then it can be shown that
(31) leads to (21) by using the matrix inversion lemma show-
ing I−uH(I+uuH)−1u = (1+uHu)−1 for any vector u. If
c(f)c(−f) ̸= 0, then, since P̃ (f)HP̃ (f) = diag

{
c(f), c(−f)

}
is invertible, it can be shown that

P̃ (f)H
(
I + P̃ (f)K(fT )P̃ (f)H

)−1
P̃ (f)C̃(f) = I,
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where C̃(f) is defined as

C̃(f) ,
(
P̃ (f)HP̃ (f)

)−1
+K(fT ).

Since c(f) and c(−f) are not zero, we can rewrite C̃(f) as

C̃(f) =

c(f)−1 0

0 c(−f)−1 + 1− k(fT )2

+ k(fT )k(fT )T .

Thus, we now can rewrite the right side of (31) as
TM(fT )k(fT )T C̃(f)−1k(fT ). By using the matrix inver-
sion lemma, the conclusion follows. 2

B. Proof of Proposition 4

Proof: For convenience, the integration interval F+ is par-
titioned into N equal-length subintervals. Then, the solution can
be straightforwardly extended to the original problem by letting
N tend to infinity. Let ξi , i/(2NT ) − 1/(4NT ), ai , a(ξi),
âi , a(−ξi), mi , M(ξiT )/T , m̂i , M(−ξiT )/T , λi ,
λ(ξi), λ̂i , λ(−ξi), and ki , k(ξiT ). Then, the original opti-
mization problem can be approximated by

minimize
ai,âi≥0

N∑
i=1

fi(ai, âi) (32a)

subject to
N∑
i=1

(
miai + m̂iâi

)
≤ PTT, (32b)

where fi(ai, âi) is given by

fi(ai, âi) ,
m̂i(1 +miλiaik̄i) +mi(1 + m̂iλ̂iâik̄i)

1 +miλiai + m̂iλ̂iâi +miλiaim̂iλ̂iâik̄i
)

for non-negative real numbers mi, m̂i, λi, λ̂i, and k̄i , 1 − k2i
with 0 ≤ ki < 1, ∀i. It can be easily shown that, if mi = 0,
ai can be chosen arbitrarily because ai does not affect both the
objective function and the constraint. It can be also easily shown
that λi = 0 results in ai = 0 to keep from wasting the transmit
power. Similarly, if m̂i = 0, then âi can be chosen arbitrarily,
and if λ̂i = 0, then âi = 0. The case of ki = 1 is discussed after
solving the optimization problem for ki < 1. Thus, in what
follows, we assume that mim̂i ̸= 0, λiλ̂i ̸= 0, and ki < 1, ∀i.

Define a and m as

a , [a1, â1, a2, â2, · · · , aN , âN ]T

and
m , [m1, m̂1,m2, m̂2, · · · ,mN , m̂N ]T ,

respectively. Then, it can be easily shown that the Hessian Fi(a)

of the objective function
∑N

i=1 fi(ai, âi) is a positive definite
matrix for each a and the equality constraint

∑N
i=1

(
miai +

m̂iâi
)

= mT a is an affine function of a. Thus, the prob-
lem in (32) is a strictly convex optimization problem. Since
the Karush-Kuhn-Tucker (KKT) condition is necessary and suf-
ficient for a point to be the unique solution of a strictly convex
optimization problem [25, Theorem 22.9], we first need to find

the KKT condition.

The Lagrangian function of (32) can be written as

l(a, ν,u) =

N∑
i=1

fi(ai, âi) + ν(mT a− PTT )− µT a

by introducing the multipliers ν and

µ , [µ1, µ̂1, µ2, µ̂2, · · · , µN , µ̂N ]T .

Then, the KKT condition can be written as

−miλi

(
m̂ik

2 +miĝi(âi)
2
)
/hi(ai, âi)

2 +miν − µi = 0

and
−m̂iλ̂i

(
mik

2 + m̂igi(ai)
2
)
/hi(ai, âi)

2 + m̂iν − µ̂i = 0

with ai ≥ 0, âi ≥ 0, µi ≥ 0, µ̂i ≥ 0, µiai = 0, µ̂iâi = 0, ∀i,
and

∑N
i=1(miai + m̂iâi) = PTT , where

hi(ai, âi) , 1 +miλiai + m̂iλ̂iâi +miλiaim̂iλ̂iâik̄i,

gi(ai) , 1 +miλiaik̄i,

and
ĝi(âi) , 1 + m̂iλ̂iâik̄i.

Define νi(ai, âi) , λi

(
m̂ik

2 + miĝi(âi)
2
)
/hi(ai, âi)

2 and
ν̂i(ai, âi) , λ̂i

(
mik

2+m̂igi(ai)
2
)
/hi(ai, âi)

2, respectively. It
can be easily shown that ∂νi(ai, âi)/∂ai < 0, ∂νi(0, âi)/∂âi <
0, ∂ν̂i(ai, âi)/∂âi < 0, and ∂ν̂i(ai, 0)/∂ai < 0 for all ai ≥
0 and âi ≥ 0. Thus, νi(ai, âi) < νi(0, 0) and ν̂i(ai, âi) <
ν̂i(0, 0), respectively, for all ai > 0 and âi > 0. It can be
also shown that, if ν ≥ νi(0, 0) and ν ≥ ν̂i(0, 0), then only
ai = 0 and âi = 0 satisfy the KKT condition. It is noteworthy
that ν satisfying the KKT condition is upper-bounded by νmax

that is defined as the largest value among νi(0, 0) and ν̂i(0, 0),
∀i, which can be easily found and is finite and positive. Thus,
to find a, ν, and µ that jointly satisfy the KKT condition, a line
search for ν can be performed over the interval (0, νmax], where
two steps are needed to construct a candidate solution a and the
multiplier µ at each ν.

First, a candidate solution a associated with ν is constructed
as follows. Given ν, we need to find the pair of (ai, âi) sat-
isfying the KKT condition, i.e., ν − µi/mi = νi(ai, âi) and
ν − µ̂i/m̂i = ν̂i(ai, âi) with ai ≥ 0, âi ≥ 0, µi ≥ 0, µ̂i ≥ 0,
µiai = 0, µ̂iâi = 0, which can be rewritten as

ai = u1(âi)

,

√λi

(
m̂ik2 +miĝi(âi)2

)
ν

− (1 + m̂iλ̂iâi)

+

1

λimiĝi(âi)
,

(33a)
âi = u2(ai)

,

√ λ̂i

(
mik2 + m̂ig(ai)2

)
ν

− (1 +miλiai)

+

1

λ̂im̂ig(ai)
,

(33b)
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µi = 0 if ai > 0, and µ̂i = 0 if âi > 0. It can be easily shown
that u1(âi) is a decreasing function of âi and u2(ai) is a decreas-
ing function of ai. Thus, (u2(u1(âi)) becomes an increasing
function of âi. It is noteworthy that the non-negative numbers
ai and âi are upper-bounded by u1(0) and u2(0). Thus, when
we alternately update ai and âi from âi = 0 by using (33a)
and (33b), respectively, both ai and âi converge to the solution
satisfying the KKT conditions. This iteration algorithm can be
also used to find the candidate solution ai and âi for the case of
ki = 1. Note that, if ki = 1 and λi = λ̂i, any pair of ai and âi
satisfying miai + m̂iâi = [

√
(mi + m̂i)/(λiν) − 1/λi]

+ can
be the candidate solution associated with ν. After finding ai and
âi, µi and µ̂i can be computed by substituting ai, âi, and ν into
the KKT condition.

Second, after constructing the candidate solution a associ-
ated with ν, we check whether the candidate solution satisfies
the power constraint

∑N
i=1

(
miai + m̂iâi

)
= PTT . If so, then

the candidate solution associated with νopt is the optimal solu-
tion aopt. If not, then the line search continues. Therefore, the
conclusion follows. 2
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